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1 The Fundamental Lifting Property

This section is devoted to stating Theorem 1.1 and beginning its proof. We prove only the
first of its two statements here. This part of the theorem will then be used in the sequel, and
the proof of the second statement will follow from the results obtained in the next section.
We will be careful to avoid circular reasoning.

The utility of the theorem will soon become obvious as we repeatedly use its statement to
produce maps having very specific properties. However, the true power of the theorem is not
unveiled until § 5, where we show how it leads to a mutual characterisation of cofibrations
and fibrations in terms of an orthogonality relation.

Theorem 1.1 Let j : A ↪→ X be a closed cofibration and p : E → B a fibration. Assume
given the solid part of the following strictly commutative diagram

A

j

��

f // E

p

��
X g

//

h

>>|
|

|
|

B.

(1.1)
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Then the dotted filler can be completed so as to make the whole diagram commute if either
of the following two conditions are met

• j is a homotopy equivalence.

• p is a homotopy equivalence.

As mentioned above, we prove here only the case that j is a homotopy equivalence. The
proof of this is given just after the following lemma. The proof of the second statement can
be found in § 5 and relies on the material of § 4.

Lemma 1.2 Let X be a space and assume that there is a function ϕ : X → I such that the
inclusion i : A = ϕ−1{0} ⊆ X is a strong deformation retract. Suppose given the solid part
of the following commutative diagram

A

j

��

f // E

p

��
X g

//

h

>>|
|

|
|

B.

(1.2)

If p is a fibration, then the dotted filler h : X → E may be completed so as to make the whole
diagram commute strictly.

Proof Fix a retraction r : X → A and a homotopy D : idX ' ir under A, and use this data
to define G : X × I → X by setting

G(x, t) =

{
D(x,min{1, t/ϕ(x)}) t < ϕ(y)

x t ≥ ϕ(x).
(1.3)

Then, since p is a fibration, there exists a homotopy Ĝ completing the following diagram

X

in0

��

r // A
f // E

p

��
X × I

G
//

Ĝ

66llllllll
X g

// B.

(1.4)

Finally we get the map h : X → E by setting

h(x) = Ĝ(x, ϕ(x)). (1.5)

Proof of 1.1 when j is a homotopy equivalence If j : A ↪→ X is a cofibration and a
homotopy equivalence, then we know from the exercises that A is a strong deformation
retract of X. If moreover A is closed in X, then there is a map ϕ : X → I with ϕ−1(0) = A
which forms part of a Strøm structure. Thus the conditions for Lemma 1.2 are met and we
can find a lift h against the fibration p.

We end this section with an important example to give the reader an idea of how Theorem
1.1 may be used effectively.
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Lemma 1.3 If A ↪→ X is a cofibration, then so are the inclusions

1) X × 0 ∪ A× I ↪→ X × I

2) X × ∂I ∪ A× I → X × I.

Proof We prove only that 1) is a cofibration, since the proof for 2) is similar. Fix a home-
omorphism α : I × I → I × I which maps 0 × I ∪ I × 0 onto I × 0. Then idX × α :
X × I × I → X × I × I is a homeomorphism which maps X × I × 0∪X × 0× I ∪A× I × I
onto X×I×0∪A×I×I. Now, since A×I ↪→ X×I is a cofibration we can find a retraction
r : X × I × I → X × I × 0 ∪ A× I × I. The composite r(idX × α)−1 is now a retraction

X × I × I → X × I × 0 ∪ (X × 0 ∪ A× I)× I. (1.6)

We have just seen that the inclusion X×0∪A×I ↪→ X×I is a cofibration when A ↪→ X
is. In fact its easy to see that it is also a deformation retraction. In particular, if p : E → B
is a fibration, then according to Theorem 1.1 a filler can be found for any diagram of the
form

X × 0 ∪ A× I
_�

��

f∪G // E

p

��
X × I

H
//

H̃

88pppppp
B.

(1.7)

Observe the input data here:

• A map f : X → E.

• A partial homotopy G : A× I → E starting at f |A.

• A homotopy H : X × I → B starting at pf .

The output is the homotopy H̃ : X × I → E lifiting H and extending G. The existence of
H̃ is referred to as the covering homotopy extension property of p. �

2 Spaces Over B

In this section B will denote an arbitrary but fixed space. We will define and study the
category of spaces over B. Later we will show how to do homotopy theory in this category.
Such categories are also called overcategories, or slice categories, and are the correct settings
for parametrised problems which arise frequently in applications of topology and homotopy
to other areas of mathematics.

The category of spaces over B is also the correct setting to formulate questions about
fibrations with codomain B. It is especially in this context that we will come to understand
the true power of fibrations.
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Definition 1 Let B be a space. A space over B is a map f : X → B. If f : X → B and
g : Y → B are spaces over B, then a map α : X → Y is said to be a map over B if it
makes the following triangle commute

X

f   BBBBBBBB
α // Y

g
~~}}}}}}}}

B.

(2.1)

There is a well-defined composition of maps over B which is induced from the composition
in Top. Moreover identity functions are maps over B. Hence the spaces and maps over B
form a category which we denote Top/B and call the category of spaces over B. �

We call B the base space. We call a space over B an overspace when repeated reference
to B becomes clunky and write (X, f) to denote a given overspace f : X → B. The map f
itself is said to be the structure map of (X, f). We denote by Xb = f−1(b) the fibre over
a point b ∈ B. The morphisms in Top/B are sometimes written α : X →B Y , and are called
fibrewise maps, or sometimes fibre preserving maps.

Example 2.1

1) If B = ∅, then Top/∅ has a single object and morphism. For this reason we will assume
in the sequel that B is nonempty unless specifically stated otherwise.

2) If B = ∗, then Top/∗ ∼= Top.

3) Let B = S = {u, c} be the Sierpinski space, where {u} ⊆ S is open. Given a space
X, the assignment f 7→ f−1(u) establishes a one-to-one correspondence between the
continuous maps X → S and the open sets of X. Thus the objects of Top/S are pairs
(X,U) of a space X and a distinguished open subset U ⊆ X. A fibre preserving map
α : (X,U)→ (Y, V ) is a continuous map satisfying α−1(V ) = U . �

There is a forgetful functor

Top/B
U−→ Top, (X, f) 7→ X (2.2)

which takes an overspace to its domain. In the opposite direction we get the functor

Top
B×(−)−−−−→ Top/B, K 7→ (B ×K, prB) (2.3)

which takes an unbased space K to the overspace prB : B×K → B. A free map f : K → L
is sent to the product 1B × f .

Proposition 2.1 There is an adjunction

Top/B

U **
⊥ Top.

B×(−)
ll

(2.4)

In particular, there are bijections

Top (U(X, f), K) ∼= Top/B
(
(X, f), (B ×K, prB)

)
(2.5)

which are natural in both variables.
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Proof Let f : X → B be a space over B and K a space. Then a map α : X → B × Y (in
Top) is determined by a pair of maps X → B and X → K. If α is a map over B, then the
first of these maps must be equal to f . Thus α is completely determined (in Top/B) by its
second component, which can be any map (in Top). In this way we get the bijection (2.5)
whose naturality is easy to see.

Next we give some elementary properties of the category Top/B. Proofs are left for the
reader, although for completeness we do give full statements.

Proposition 2.2 Let B be a space and consider the slice category Top/B.

1) The identity idB : B
=−→ B is a terminal object in B.

2) The category Top/B has products. The product of X → B and Y → B is the topological
pullback X ×B Y equipped with the canonical map to B.

3) The category Top/B has pullbacks. Given a diagram of spaces over B

X α //

f   AAAAAAAA Z

��

Y
βoo

g
~~~~~~~~~~

B

(2.6)

we form the topological pullback X ×Z Y . The projection maps X ×Z Y → X and
X ×Z Y → Y are maps over B, and if u : U → X and v : U → Y are maps over
B satisfying fu = gv, then we may check directly that the unique map they specify
U → X ×Z Y is a map over B. In particular X ×Z Y is the pullback in Top/B of
(X, f), (Y, g).

4) More generally, Top/B has all limits. See Borceux, [1] Pr. 2.8.2, for instance. Tracing

through Borceux’s proof we see that the limit of a diagram D F−→ Top/B may be calcu-
lated as follows. Let D∞ be the category D with an extra terminal object ∞ adjoined
(so that in particular every object in D∞ admits a unique morphism to ∞). Then F

defines a functor D∞
F∞−−→ Top by setting F∞|D = F and F∞(∞) = B. The limit of

F∞ in Top comes furnished with a canonical map to B, and so becomes a space over
B. It also has canonical maps to each F (d), d ∈ D, and checking directly we see that
this limit is also a limit for F in Top/B.

Proposition 2.3 Let B be a space.

1) The unique map ∅ → B is an initial object in Top/B.

2) The category Top/B has coproducts. The coproduct of f : X → B and g : Y → B is
(f, g) : X t Y → B.
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3) The category Top/B has pushouts. The pushout in Top/B of the top maps in a diagram

X

f   AAAAAAAA Z
αoo β //

��

Y

g~~~~~~~~~~

B

(2.7)

is (f, g) : X ∪Z Y → B.

4) The category Top/B has all colimits. The colimit of a diagram D F−→ Top/B is the

colimit in Top of the composition D F−→ Top/B
U−→ Top. It admits a canonical map to

B. According to Proposition 2.1 U is a left adjoint, and thus the statement here follows
from (the dual of) Borceux’s Proposition 3.2.2 [1].

We will use the discussion of fibrewise pullbacks above to produce another interesting
adjunction. Fix the space B and let θ : B → C be a map. Then there is a push forwards
functor

Top/B
θ∗−→ Top/C, (X, f) 7→ (X, θf) (2.8)

which sends f : X → B to the composite θf : X → C. In the other direction there is a
pullback functor

Top/C
θ∗−→ Top/B, (Y, g) 7→ (θ∗Y, pg) (2.9)

which sends g : Y → C to the canonical projection pg from the pullback θ∗Y = B×C Y onto
B.

Proposition 2.4 Let θ : B → C be a map. Then there is an adjunction

Top/B

θ∗ ,,
⊥ Top/C.

θ∗
ll (2.10)

In particular the push forward functor θ∗ is left adjoint to the pull back functor θ∗.

Proof Let f : X → B be a space over B and α : θ∗X → Y a map over C to an overspace
g : Y → C. Then gα = θf , so there is a unique map (f, α) : X → θ∗Y into the pullback.
This gives us a function Top/C(θ∗X, Y ) → Top/B(X, θ∗Y ) which we argue is a bijection
using the uniqueness of the induced maps (f, α). Moreover, using the naturality of the
pullback construction we see that this function is natural in both variables.

We need to make one last construction before discussion homotopy in Top/B. Let K be
a space and define a functor

Top/B
(−)⊗K−−−−→ Top/B, (X, f) 7→ (X, f)⊗K = (X ×K, fK) (2.11)

which takes an overspace f : X → B to the composite fK : X ×K pr1−−→ X
f−→ B. Notice that

there is a bijection Top/B
(
(X, f), (Y, g) ⊗K

) ∼= Top/B
(
(X, f), (Y, g)

)
× Top(U(X, f), K).

This construction also functorial in the second variable, and a continuous map K → K ′

induces a natural transformation ⊗K ⇒ ⊗K ′.
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2.1 Homotopy in Top/B

To define homotopy in Top/B we need a cylinder object. This is supplied by the functor
(−)⊗ I. In particular, given an overspace (X, f), for t ∈ I, each inclusion int : X ↪→ X ⊗ I,
x 7→ (x, t), is a map over B. Similarly the projection prX : X ⊗ I → X, (x, t) 7→ x, is a map
over B.

Definition 2 Let B be a space. A fibrewise homotopy, or homotopy over B, is a map
H : (X, f)⊗ I →B (Y, g) over B. The composites Ht = H ◦ int : X →B Y , t ∈ I, are maps
over B. If α = H0 and β = H1, then we write H : α 'B β. �

Thus H is a map X × I → Y satisfying gHt(x) = f(x) for all x ∈ X, t ∈ I. In particular Ht

is a map over B at each time t ∈ I. Fibrewise homotopy is an equivalence relation on the
set of fibrewise maps (X, f)→B (Y, g) and we write

[(X, f), (Y, g)]B (2.12)

for the set of fibrewise homotopy classes. The relation respects compositions, and in par-
ticular given fibrewise maps β : (Y, g) → (Z, h) and α : (W, e) → (X, f), there are induced
maps

α∗ : [(X, f), (Y, g)]B → [(W, e), (Y, g)]B, β∗ : [(X, f), (Y, g)]B → [(X, f), (Z, h)]B. (2.13)

We form the homotopy category hTop/B = h(Top/B) in the standard way. Note that
this category should not be confused with the category (hTop)/B.

Definition 3 A map over B is said to be a fibrewise homotopy equivalence, or homo-
topy equivalence over B, if it is invertible up to homotopy over B. A space X → B over
B is said to be shrinkable if it is homotopy equivalent over B to the identity idB : B

=−→ B.
�

Example 2.2 Let B be a fixed space.

1) If X → B is a space over B, then the projection prX : X ⊗ I →B X is a homotopy
equivalence over B.

2) The evaluation ev0 : BI → B, l 7→ l(0), is a shrinkable space over B.

3) If B = I and X = I × ∂I ∪ 0× I with f : X → B the projection onto the first factor,
then f is a homotopy equivalence in Top, but f is not shrinkable. �

Proposition 2.5 Let θ : B → C be a map in Top. Then each of the functors in the the
pushforwards-pullback adjunction θ∗ : Top/B � Top/C : θ∗ preserves fibrewise homotopies.
That is, if α 'B β, then θ∗α 'C θ∗β, whilst if γ 'C δ, then θ∗γ 'B θ∗δ.

Proof Both functors preserve fiberwise cylinders. That is, if X → B is a space over B and
Y → C a space over C, then

θ∗(X ⊗ I) = (θ∗X)⊗ I, θ∗(Y ⊗ I) = (θ∗Y )⊗ I. (2.14)
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Moreover both these identifications preserve the inclusions ina : X ↪→B X ⊗ I and ina :
Y ↪→C Y ⊗ I. This makes it clear that a homotopy α 'B β over B is pushed forwards
to a homotopy θ∗α 'C f∗β over C, whilst a homotopy γ 'C δ over C is pulled back to a
homotopy θ∗γ 'B θ∗δ over B.

Corollary 2.6 The pullback functor θ∗ induced by a fixed map θ : B → C is homotopical.
In particular, if X → C is homotopy equivalent to Y → C over C and θ : B → C is a map
in Top, then θ∗X → B is homotopy equivalent to θ∗Y → B over B.

The study of pullback functors with relation to fibrations is taken up in the next section.
Another question which will be addressed is the difference between fibrewise and ordinary

homotopy theory. If a map X
'−→B Y over B is a homotopy equivalence in Top/B, then it

is also homotopy equivalence in Top after forgetting structure. On the other hand, if a
fibrewise map X →B Y is given, which happens to be a homotopy equivalence in Top, then
is it possible that it is also a homotopy equivalence in Top/B? In general we must answer
this in the negative.

Example 2.3 The triangle

{0} ⊆ //

1 !!BBBBBBBB
R

exp
����������

S1

(2.15)

commutes strictly and the inclusion {0} ↪→ R is a homotopy equivalence. However there
is no map from R to {0} over S1 (indeed, exp is surjective). Hence the diagram does not
display a fibrewise homotopy equivalence over S1. �

In section 4 we give the statement 4.5, that if α : X →B Y is a map over B which is
a homotopy equivalence in Top, and both projections X, Y → B are fibrations, then α is
actually homotopy equivalence over B.

3 The Homotopy Theorem

Let p : E → B be a fibration and X a space. Fix maps f, g : X → B and form the pullbacks

f ∗E

pf
��

f̂ // E

p

��
X

f // B

p

g∗E

pg
��

ĝ // E

p

��
X

g // B.

p (3.1)

Assume that f, g are homotopic. Following [2] § 5.6, we will show in the following paragraphs
how a choice of homotopy G : f ' g may be used to get a well-defined homotopy class of
map over X

θG : f ∗E → g∗E. (3.2)
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The construction is as follows. First we apply the HLP to the diagram

f ∗E
f̂ //

in0

��

E

p

��
f ∗E × I

pf×1
//

G̃

55jjjjjjjjjj
X × I G // B

(3.3)

to get a map G̃ : f ∗E×I → E satisfying pG̃1 = gpf . From this we get a map θ̃G : f ∗E → g∗E
as that induced by the pullback

f ∗E G̃1

  

pf

$$

θ̃G

""E
E

E
E

g∗E

pg
��

ĝ // E

p

��
X

g // B.

p

(3.4)

Note that θ̃G depends not only on G but also on the choice of lift G̃ and the notation here is
designed to reflect this. It is a consequence of Lemma 3.1 below, however, that the homotopy
class of this map over X is independent of the choice of lift. Thus we set

θG = [θ̃G] ∈ [f ∗E, g∗E]X . (3.5)

The fact that this is well-defined in fact follows from a more general result. To set it up
assume given a second homotopy H : f ' g. Choose a lift H̃ : f ∗E × I → E as in 3.3 and
use it to construct a corresponding map θ̃H : f ∗E → g∗E.

Lemma 3.1 A track homotopy ψ : G ∼ H induces a homotopy Ψ : θ̃G 'X θ̃H over X.

Proof We work with the diagram

(f ∗E × 0× I) ∪ (f ∗E × I × 0) ∪ (f ∗E × I × 1)
f̂∪G̃∪H̃ //

��

E

p

��
f ∗E × I × I

pf×1×1
//

ψ̃

11dddddddddddddddddddddddd
X × I × I ψ // B.

(3.6)

Since

• ψ(x, 0, s) = f(x)

• ψ(x, t, 0) = G(x, t)

• ψ(x, t, 1) = H(x, t)

the solid part of the diagram commutes. As the vertical arrow on the left is both a homotopy
equivalence and cofibration, the dotted arrow can be filled in to yield a map ψ̃ satisfying
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• pψ̃(e, t, s) = ψ(pf (e), t, s)

• ψ̃(e, 0, s) = f̂(e)

• ψ̃(e, t, 0) = G̃(e, t)

• ψ̃(e, t, 1) = H̃(e, t).

Let Ψ′ : f ∗E×I → E be the map Ψ′(e, t) = ψ̃(e, 1, t). Then the following diagram commutes

f ∗E × I
Ψ′

""

pf◦pr1

%%

Ψ

$$J
J

J
J

J

g∗E

pg
��

ĝ // E

p

��
X

g // B.

p

(3.7)

and induces the homotopy Ψ. Since Ψ′|f∗E×0 = G̃1 we get from the uniqueness of the map

into the pullback that Ψ0 = θ̃G. Similarly Ψ′|f∗E×1 = H̃1 implies that Ψ1 = θ̃H .

If we take G = H, then G̃, H̃ are lifts of the same homotopy. Taking ψ be the identity track
on G and applying the lemma thus establishes the independence of θ̃G on the choice of lift
up to homotopy.

Proposition 3.2 The class θG = [θ̃G] ∈ [f ∗E, g∗E]X is well-defined.

Now fix a third map h : X → B and form a third pullback

h∗E

ph
��

ĥ // E

p

��
X h // B.

p (3.8)

Assume that H : g ' h is a homotopy and let θH ∈ [g∗E, h∗E]X be the corresponding class.

Lemma 3.3 It holds that
θG+H = θHθG ∈ [f ∗E, h∗E]X . (3.9)

Proof Fix lifts G̃ and H̃ as in the diagrams

f ∗E
f̂ //

in0

��

E

p

��
f ∗E × I

pf×1
//

G̃

55jjjjjjjjjj
X × I G // B

g∗E
ĝ //

in0

��

E

p

��
g∗E × I

pg×1
//

H̃

44jjjjjjjjjj
X × I H // B.

(3.10)

and use them to define maps θ̃G : f ∗E → g∗E and θ̃H : g∗E → h∗E as in (3.4). Note that

H̃0θ̃G = ĝθ̃G = G̃1 (3.11)
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so the homotopy G̃+ H̃θ̃G : Ef × I → E is defined. Then (G̃+ H̃θ̃G)0 = G̃0 = f̂ and

p(G̃+ H̃θ̃G) = pG̃+ pH̃θ̃G = Gpf +Hpgθ̃G = Gpf +Hpf = (G+H)pf . (3.12)

It follows that the homotopy G̃+ H̃θ̃G completes the dotted lift in the next diagram

f ∗E
f̂ //

in0

��

E

p

��
f ∗E × I

pf×1
//

G̃+H̃θ̃G

55jjjjjjjjjj
X × I G+H // B

(3.13)

and so is suitable for defining the class θG+H ∈ [f ∗E, h∗E]X .
On the other hand, we can be more explicit about this class. In particular it is defined

by means of a map θ̃G+H , which is itself constructed from the G̃+ H̃θ̃G as in (3.4). Since

(G̃+ H̃θ̃G)1 = H̃1θ̃G (3.14)

we see that the
θ̃G+H = θ̃H θ̃G (3.15)

and so get the claim.

The lemma shows how the construction interacts with vertical composition of homotopies.
We show next that it also interacts pleasantly well also with the horizontal composition. For
this we will need to take some care with notation. Assume that f ' g : X → B are as
above, and that we now have homotopic maps k ' l : Y → X. Forming the iterated
pullback diagram

k∗(f ∗E) //

��

f ∗E

pf
��

f̂ // E

p

��
Y //k // X

p

f // B

p (3.16)

there is a canonical identification k∗f ∗E ∼= (fk)∗E. Given homotopies G : f ' g and
H : k ' l, their composition gives a map

θGH : k∗f ∗E ∼= (fk)∗E → (gl)∗E ∼= l∗g∗E (3.17)

which is well-defined up to homotopy. On the other hand, there is also the map θG : f ∗E →
g∗E, which by pullback induces maps

k∗θG : k∗f ∗E → k∗g∗E, l∗θG : l∗f ∗E → l∗g∗E (3.18)

and
f∗θH : k∗f ∗E → l∗f ∗E, g∗θH : k∗f ∗E → l∗f ∗E (3.19)

where the f∗, g∗ is notation only to indicate the domains of the maps (3.2).
These maps compose to give three homotopy classes k∗f ∗E → l∗g∗E over X. We apply

the interchange law
Gk + gH ∼ GH ∼ fH +Gl (3.20)

and appeal to Lemmas 3.1, 3.3 to get the following
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Proposition 3.4 With the notation above, the diagram

k∗f ∗E
k∗θG //

f∗θH
��

k∗g∗E

g∗θH
��

l∗f ∗E
l∗θH // l∗g∗E

(3.21)

commutes up to homotopy over X. Moreover both composition k∗f ∗E → l∗g∗E are homotopic
to the map θGH .

3.1 Implications

The machinery developed so far this section is quite powerful. Here we put it to good use
and collect some important statements which we will use in future. The main results of
this section are the homotopy theorem for fibrations 3.5 and its corollary 3.6, the homotopy
invariance of fibres.

Theorem 3.5 If p : E → B is a fibration, and f ' g : X → B are homotopic maps, then
there is a homotopy equivalence f ∗E 'X g∗E over X.

Proof A choice of homotopy G : f ' g induces homotopy classes θG : f ∗E → g∗E and
θ−G : g∗E → f ∗E. Using Lemma 3.1 we see that the trivial homotopy 1f : f ' f induces the
class of the identity on f ∗E. We combine Lemmas 3.1 and 3.3 together with the equation
G−G ∼ 1f to get

θ−GθG = θG−G = θ1f = [idf∗E]. (3.22)

Similarly we check that

θGθ−G = θ−G+G = θ1g = [idg∗E]. (3.23)

If b, c ∈ B, then there are pullbacks

Eb

��

// E

p

��
∗ b // B

p

Ec

��

// E

p

��
∗ c // B.

p (3.24)

where Eb, Ec are the fibres of p over b, c, respectively. Assume that b, c lie in the same path
component. Then a choice of path α : I → B gives rise to a homotopy class

θα : Eb → Ec (3.25)

from the fibre of p over b to the fibre of p over c. According to Corollary 3.5 this map is a
homotopy equivalence.

Corollary 3.6 Let p : E → B be a fibration. All the fibres of p over points in the same path
component of B have the same homotopy type. In particular, if B is path-connected, then
all fibres of p are homotopy equivalent.
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If β : I → B is a path from b to a third point c, then

θα+β = θβθα (3.26)

holds up to homotopy. In particular, if B is equipped with a basepoint ∗ and F = p−1(B) is
the typical fibre of p, then there is a well-defined homomorphism

π1B → E(F ), α 7→ θα−1 (3.27)

where E(F ) is the group, under composition, of homotopy classes of self-homotopy equiv-
alences F → F . We think of π1B as acting ‘up to homotopy’ on F through this homo-
morphism. In particular π1B acts on all homotopy, homology and cohomology groups of
F .

Example 3.1 Here we will consider the universal covering γn : Sn → RP n. This map is
a fibration1 and we will compute the action of π1RP n on the discrete fibre F = Z2. Since
the fibre is discrete, the action (3.27) will actually factor through one by homeomorphisms,
so the conclusion should come as no surprise to anyone with some experience of covering
spaces.

If n = 1 then there is a homeomorphism

S1 ∼=−→ RP 1, t 7→ [cos(πt), sin(πt)] (3.28)

where t ∈ S1 ∼= I/∂I. We’ll focus on the n ≥ 2 case below, but we need this map to do so.
If n ≥ 2 then RP n is the adjunction space RP n ∼= RP n−1 ∪γn−1 e

n. An inductive application
of the Seifert-Van Kampen Theorem shows that π1RP n ∼= Z2 for n ≥ 2 and is generated by
the composite S1 ∼= RP 1 ↪→ RP n. Given (3.28) we represent this generator as a path by the
map

α : I → RP n, t 7→ [cos(πt), sin(πt), 0, . . . , 0]. (3.29)

Now recall the steps needed to define the map θα : Z2 → Z2. We find the lift α̃ in the
diagram (this is (3.3))

F = Z2
//

in0

��

Sn

p

��
Z2 × I pr2

//

α̃

66llllllll
I

α // RP n

(3.30)

and then set
θα = α̃1. (3.31)

This has values in the fibre, so we consider θα as a map Z2 → Z2.
Now our choice of representative (3.29) makes it clear that we can choose α̃ to be the

map
α̃(±1, t) = (± cos(πt),± sin(πt), 0, . . . , 0). (3.32)

In particular, the action of θα = α̃1 on Z2 is just multiplication by the generator.
As we mentioned above, it is not difficult to generalise this example to compute the action

of π1X on any covering space of X. �

1That covering spaces are fibrations will be discussed next lecture.
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We end this section with another corollary of Theorem 3.5 which is unrelated to the
proceeding discussion.

Corollary 3.7 Let a pullback square

f ∗E

pf
��

f̂ // E

p

��
X

f // B

p (3.33)

be given. Assume that p : E → B is a fibration and f : X
'−→ B is a homotopy equivalence.

Then f̂ : f ∗E → E is a homotopy equivalence.

Proof Choose a homotopy inverse g : B
'−→ X to f . Then there is a homeomorphism

between the following two pullback spaces

g∗(f ∗E) ∼= (gf)∗E (3.34)

and according to Theorem 3.5, also a homotopy equivalence

(gf)∗E ' (idB)∗E = E. (3.35)

4 Transport

Consider a diagram of spaces over B

X
α //

f   AAAAAAAA E

p
~~~~~~~~~~

B

(4.1)

where f is a map and p is a fibration. Assume that F : f ' g : X → B is a homotopy. We
show in this paragraph how to use F to turn (4.1) into a diagram

X
F#α //

g
  AAAAAAAA E

p
~~~~~~~~~~

B

(4.2)

where F#α is a map defined up to homotopy over B. We show how the homotopy class
of F#α over B depends only on α through its homotopy class over B. In this way our
construction defines a function

F# : [(X, f), (E, p)]B → [(X, g), (E, p)]B (4.3)

called transport along F .
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The construction is as follows. Starting with (4.1) we apply the HLP to the diagram

X

in0

��

α // E

p

��
X × I

F̃
;;x

x
x

x
x

F // B

(4.4)

to find a homotopy F̃ : X × I → E with F̃0 = α and pF̃ = F . Set

F#α = F̃1 : X → E. (4.5)

We show next that the homotopy class of this map over B is independent of the choice of lift
F̃ , as well as that it depends only on F through its track homotopy class. The constructions
are formally very similar to the last section, so details are sketched.

If ψ : F ∼ G is a track homotopy, then we find a lift G̃ : X × I → E and apply the
covering homotopy lifting property to the following diagram

X × I × 0 ∪X × 0× I × I ∪X × I × 1

��

F̃1∪α∪G̃1 // E

p

��
X × I × I

ψ̃

33gggggggggggggg ψ // B

(4.6)

to get ψ̃ : X × I × I → E. Then (x, t) 7→ ψ̃(x, 1, t) is a homotopy over B

F#α = F̃1 'B G̃1 = G#α. (4.7)

Next we assume that F : f ' g and G : g ' h are homotopies of maps X → B. We
construct transport maps

F# : [(X, f), (E, p)]B → [(X, g), (E, p)]B, G# : [(X, f), (E, p)]B → [(X, h), (E, p)]B (4.8)

and would like to compare the composite G# ◦ F# with

(F +G)# : [(X, f), (E, p)]B → [(X, h), (E, p)]B. (4.9)

Choose lifts F̃ , G̃ as in the following diagrams

X

in0

��

α // E

p

��
X × I

F̃
;;x

x
x

x
x

F // B

X

in0

��

F̃1 // E

p

��
X × I

G̃
;;w

w
w

w
w

G // B.

(4.10)

Then G#F#(α) = G#([F̃1]) = [G̃1]. On the other hand F̃ + G̃ is defined and provides a lift
in the following diagram

X

in0

��

α // E

p

��
X × I

F̃+G̃
77nnnnnnn

F+G // B.

(4.11)

15



Thus
(F +G)#(α) = [(F̃ + G̃)1] = [G̃1]. (4.12)

In particular
(F +G)# = G# ◦ F#. (4.13)

Summarising the results of this section we present the following.

Proposition 4.1 Let F : f ' g be a homotopy of maps X → B. Assume that p : E → B
is a fibration. Then the transport along F is a well-defined bijection

F# : [(X, f), (E, p)]B → [(X, g), (E, p)]B (4.14)

which depends only on the track homotopy class of F . If G : g ' h is a second homotopy of
maps X → B, then the transport functors F#, G# compose as

G# ◦ F# = (F +G)#. (4.15)

Proof The argument culminating in (4.7) shows that F# is well-defined and depends only on
the track homotopy class of F . The equation (4.15) is explained in the paragraph proceeding
(4.13). To see that F# is bijective we use

F − F ∼ 1f (4.16)

to get
F# ◦ (−F )# = (F − F )# = (1f )

# = id (4.17)

and similarly −F + F ∼ 1G to get (−F )# ◦ F# = id.

4.1 Implications

The main result of this section is Theorem 4.4. We start more generally by considering the
following situation

X
αf //

f   AAAAAAAA E

p

�������������������

Y

α

55jjjjjjjjjjjjjjjjjjjj

k   @@@@@@@@

B

(4.18)

where we assume given homotopy F : f ' g of maps X → Y .

Lemma 4.2 The following diagram commutes

[(Y, k), (E, p)]B
f∗

uukkkkkkkkkkkkkk
g∗

))SSSSSSSSSSSSSS

[(X, kf), (E, p)]B
(kF )# // [(X, kg), (E, p)]B.

(4.19)
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Proof Let α ∈ [(Y, k), (E, p)]B. From the definition we have (kF )#f ∗(α) = (kF )#(αf) =

[k̃F 1], where k̃F is some lifting homotopy as in the following diagram

X

in0

��

αf // E

p

��
X × I

k̃F
;;w

w
w

w
w

kF // B.

(4.20)

If we set k̃F = αF , then

pk̃F = p(αF ) = kf, k̃F 0 = αf. (4.21)

So choosing k̃F in this way we have

(kF )#f ∗(α) = [k̃F 1] = [αg] = g∗[α] (4.22)

which is what we needed to show.

Proposition 4.3 In the situation of (4.18), assume that p is a fibration and f is an ordinary
homotopy equivlance. Then

f ∗ : [(Y, k), (E, p)]B → [(X, kf), (E, p)]B (4.23)

is bijective.

Proof Let g : Y → X be a homotopy inverse to f and consider the sequence of sets

[(Y, k), (E, p)]B
f∗−→ [(Y, kf), (E, p)]B

g∗−→ [(Y, kfg), (E, p)]B
f∗−→ [(X, kfgf), (E, p)]B. (4.24)

Choose a homotopy F : fg ' idY and apply Lemma 4.2 to get a commutative diagram

[(Y, k), (E, p)]B
(fg)∗

uukkkkkkkkkkkkkk
(idY )∗=1

))SSSSSSSSSSSSSS

[(Y, kfg), (E, p)]B
(kF )# // [(Y, k), (E, p)]B.

(4.25)

Then g∗f ∗ = (fg)∗ is bijective, which implies that f ∗ is injective. Choosing a homotopy
gf ' idX we form an identical argument to show that f ∗g∗ = (gf)∗ is bijective. This second
equation implies that f ∗ is surjective, and so gives us the proposition.

Theorem 4.4 Let p : E → B, q : F → B be fibrations and α : E → F a map over B

E α //

p
  AAAAAAAA F

q
~~}}}}}}}}

B.

(4.26)

Assume that α is an ordinary homotopy equivalence. Then α is a homotopy equivalence over
B.
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Proof According to proposition 4.3, the induced map

α∗ : [(F, q), (E, p)]B → [(E, p), (E, p)]B (4.27)

is bijective. In particular there is map β : F → E over B such that

α∗[β] = [βα] = [idE] (4.28)

which implies that β is both

i) a left homotopy inverse to α over B

ii) a two-sided ordinary homotopy inverse to α.

It follows from the last point that

β∗ : [(F, q), (F, q)]B → [(E, p), (F, q)] (4.29)

is bijective so there thus exists a map γ : E → F over B such that

β∗[γ] = [γβ] = [idF ]. (4.30)

But this shows that β is has both left- and right-homotopy inverse over B, which implies
that β is a homotopy equivalence over B. Thus by the uniqueness of homotopy inverses in
TopB, we must have α 'B γ, so that α is a homotopy inverse to β in TopB.

A surjective map f : X → B is said to be weakly shrinkable if it is a homotopy
equivalence which admits a strict section s : B → X. The map f is said to be shrinkable
if it is weakly shrinkable and there is a homotopy F : sp ' idE over B. This means that for
each b ∈ B, the homotopy F satisfies pFt(e) = p(e) for all t ∈ I. The reader can check that
equations these are just the details of Definition 3 spelled out. Shrinkable is the notion dual
to that of deformation retraction.

Corollary 4.5 Let p : E → B a fibration and a homotopy equivalence. Then p is shrinkable.

Proof Choose a homotopy inverse s′ : B → E to p and a homotopy F : ps′ ' idB. The last
equation shows that the image of p meets each path component of B, and this implies that
p is surjective, since it is a fibration. Now apply the HLP to the diagram

B

in0

��

s′ // E

p

��
B × I F //

F̃
;;x

x
x

x
x

B

(4.31)

and set s = F̃1 : B → E. Then ps = idB, which shows that p is weakly shrinkable. Next
observe the following diagram of spaces over B

B s //

AAAAAAAA

AAAAAAAA E

p
~~}}}}}}}}

B.

(4.32)

The map s satisfies sp ' s′p ' idE, so is an ordinary homotopy equivalence. But in light of
Theorem 4.4 this shows that s is actually a homotopy equivalence over B.
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The following is another corollary we can draw from 4.4. The reader should compare it
with the statement 3.7.

Corollary 4.6 Let a pullback square

f ∗E

pf
��

f̂ // E

p

��
X

f // B

p (4.33)

be given. Assume that p : E → B is both a fibration and a homotopy equivalence. Then so
is pf : f ∗E → X.

Proof It was shown in Fibrations I that pf is a fibration so we need only show that it is a
homotopy equivalence. Following Theorem 4.4 we find a section s of p, which we view as a
map over B of the form s : (B, idB)→ (E,P ). Then the map f : X → B induces a pullback
functor f ∗ : Top/B → Top/X and f ∗(s) is a map

f ∗(s) : f ∗(B, idB) ∼= (X, idX)→ (f ∗E, pf ) (4.34)

over X. That is f ∗(s) is a section of pf . It was shown in Corollary 2.6 that the pullback
functor f ∗ is homotopical, so the fibrewise homotopy sp 'B idE is pulled back to homotopy
f ∗(s)pf 'X idf∗E over X.

5 Proof of the Fundamental Lifting Property Com-

pleted.

Proof of 1.1: p is a homotopy equivalence We need to show that if p is a fibration and
a homotopy equivalence, then the dotted arrow may be completed in any diagram

A

j

��

f // E

p

��
X g

//

h

>>}
}

}
}

B

(5.1)

in which j is a closed cofibration. To proceed choose a strict section s : B → E and a
homotopy F : sp ' idE over B, both of which exist according to Corollary 4.5. Now apply
the covering homotopy lifting property to the diagram

X × 0 ∪ A× I

��

sg∪F (g×1) // E

p

��
X × I pr1

//

H̃

55jjjjjjjjjj
X

g // B

(5.2)

and let h = H̃1. Then ph = g and hj = F1g = g, so we’re done.
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6 The Mutal Characterisation of Cofibrations and Fi-

brations

The purpose of this section is to formulate a sort of converse to the Fundamental Lifting
Property. This will be a formal characterisation of cofibrations and fibrations in terms of
the existence of diagonal fillers in certain commutative spaces. Consequently it is possible
to explore much of the theory of cofibrations and fibrations on a purely formal level. Our
presentation follows Strøm’s original paper [3]. Some implications of the Orthogonality
Theorem 6.2 which are actually easier to prove in the formal setting are explored at the end
of this section.

Definition 4 Let f : A → X and g : B → Y be continuous maps. We say that f has the
left lifting property (LLP) with respect to g, and that g has the right lifting property
(RLP) with respect to f , if the dotted filler can be completed in any given commutative square
of the form

A

f
��

// B

g

��
X //

>>}
}

}
}

Y.

(6.1)

Let E be a class of maps in Top. We say that f has the left lifting property with respect
to E if it has the left lifting property with respect to each map in E. We say that g has the
right lifting property with respect to E if it has the right lifting property with respect to
each map in E. �

Example 6.1

1) A map g : B → Y has the right lifting property with respect to ∅ → ∗ if and only if it
is surjective. g has the right lifting property with respect to S0 → ∗ if and only if it is
injective.

2) By definition a map f : A → X is a cofibration if and only if has the left lifting
property with respect to the class of maps {e0 : Y I → Y }.

3) By definition a map g : B → Y is a fibration if and only if it has the right lifting
property with respect to the class of maps {in0 : A ↪→ A× I}. �

Lemma 6.1 Let X be any space and A ⊆ X be an inclusion. Let EA = A× I ∪X× (0, 1] ⊆
X× I and let π : EA → X be the projection onto the first factor. Then π is both a homotopy
equivalence and a fibration.

Proof It is easy to see that π is a homotopy equivalence and we leave this to the reader.
To see that π is a fibration assume given a homotopy lifting problem

K

��

v // EA

π

��
K × I H //

;;w
w

w
w

X

(6.2)
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where K is some space. The map H̃ : K × I → E given by

H̃t(k) = (Ht(k), t+ (1− t)pr2(v(k)) (6.3)

is then a solution. �

The following is the main result of the section. We call it the Orthogonality Theorem.

Theorem 6.2 1) A map f : A→ X is a closed cofibration if and only if has the left lifting
property with respect to all maps which are both fibrations and homotopy equivalences.

2) A map f : A→ X is both a closed cofibration and a homotopy equivalence if and only
if has the left lifting property with respect to all fibrations.

3) A map g : B → Y is a fibration if and only if has the right lifting property with respect
to all maps which are both cofibrations and homotopy equivalences.

4) A map g : B → Y is both a fibration and a homotopy equivalence if and only if has the
right lifting property with respect to all cofibrations.

Proof Each of the four forwards implications follows by applying the Fundamental Lifting
Property 1.1, so we only prove the four reverse implications.

1) ⇐ Assume that f : A → X has the LLP with respect to all fibrations which are
homotopy equivalences. Then in particular f lifts against the class of maps {e0 : Y I → Y }
so is a cofibration. This means that f is an embedding, and we will be done if we can show
that it is closed.

For this let EA and π : EA → X be as in Lemma 6.1. Since f has the LLP with respect
to π, the map A → E, a 7→ (a, 0) has an extension f̃ : X → E which satisfies πf̃ = idX .

Then A = f̃−1pr−1
2 ({0}), so is closed.

2) ⇐ It follows from part 1) that f must be a closed cofibration. To show that f is
also a homotopy equivalence we work as follows. Using the assumptions we find a retraction
r : X → A as the dotted filler in the diagram

A

f
��

A

��
X //

r
>>~

~
~

~
∗.

(6.4)

We then get a homotopy H : idX ' fr by using the LLP to find a filler for the diagram

A

f

��

c // XI

e0,1

��
X

(idX ,fr)
//

;;w
w

w
w

w
X ×X

(6.5)

where c sends a point a ∈ A to the constant path at f(a) ∈ X. It was shown in § 3 of
Fibrations I that the start-end evaluation e0,1 is a fibration.

21



3) ⇐ Since for any space X, the inclusion in0 : X ↪→ X × I is a closed cofibration and a
homotopy equivalence, we see that g is a fibration.

4) ⇐ It follows similarly to 3) that g is a fibration. Applying the RLP to the diagram

∅

��

// B

g

��
Y

s
??�

�
�

�
Y

(6.6)

we get a section s of g. Applying the RLP a second time, this time to

B × 0 ∪B × 1

��

sg∪idB // B

g

��
B × I pr1 //

H

55jjjjjjjjj
B

g // Y

(6.7)

we get a homotopy H : sg ' idB. In particular g is a homotopy equivalence.

Let C denote the class of all closed cofibrations, F the class of all fibrations, and W the
class of all homotopy equivalences.

6.1 Implications

As mentioned above, many of the formal properties of cofibrations and fibrations can be
obtained from purely formal manipulations based around the Orthogonality Theorem. For
example we invite the reader to return to Fibration I and derive the statements there from
only the formal duality principal. On the other hand, here are some results we did not
present before.

Proposition 6.3 Consider the following pushout square

A

j '
�� y

f // B

k
��

X
f ′
// Y.

(6.8)

Suppose that j is both a closed cofibration and a homotopy equivalence. Then so is k.

Proof It suffices to show that k has the LLP with respect to all fibrations. So assume
p : E → B is a fibration and maps g, h are given so as to make the following diagram
commute

A

j '
�� y

f
// B

k
��

g
// E

p

��
X

f ′
// Y

>>}
}

}
}

h
// B.

(6.9)

We must construct the dotted arrow. Now, since j is both a cofibration and a homotopy
equivalence, there exists a map α : X → E such that pα = hf ′ and αj = gf . Since the
left-hand square is a pushout, there is a unique map β : Y → E with βf ′ = α and βk = g.
Also, (pβ)k = pg = hk and (pβ)f ′ = pα = hf ′, and this implies that pβ = h, so we’re done.
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This proposition is formally dual to the statement of Corollary 4.6. The proof here followed
comparatively quickly having established the Orthogonality Theorem.

Proposition 6.4 Assume given a countable sequence of cofibrations

X0
j0−→ X1

j1−→ . . .→ Xn
jn−→ Xn+1 → . . . (6.10)

and let X∞ = colim Xn. Then the canonical map X1 → X∞ is a cofibration.
Similarly, if

. . .→ En+1
pn−→ En → . . .

p1−→ E1
p0−→ E0 (6.11)

is a countable sequence of fibrations pn : En → En−1 and E∞ = lim En, then the canonical
map π : E∞ → E0 is a fibration.

Proof The first statement is left as an exercise for the reader. To show that π is a fibration
it will suffice to show that it has the right lifting property with respect to any given map
j : A ↪→ X which is both a closed cofibration and a homotopy equivalence. So suppose given
the solid part of the following diagram

A

j '
��

f // E∞

π

��
X g

//

h
==|

|
|

|
E0

(6.12)

We produce the dotted filler h as follows. For each n ≥ 1 let fn : A→ En and gn : X → En
be the composites

fn : A→ E∞ → En, gn : X → E∞ → En. (6.13)

Then for each n ≥ 1 the solid part of

A

j '
��

fn // En

pn

��
X gn−1

//

hn
<<z

z
z

z
En−1

(6.14)

commutes. Since j has the LLP with respect to pn, the dotted arrow hn : X → En can be
filled in. Set h0 = g. Then the collection of maps hn, n ≥ 0, induces a map h : X → E∞
into the limit of the tower 6.11. By definition πh = g. Since each composite

A
j−→ X

h−→ E∞ → En (6.15)

coincides with fn, we conclude from the universal property of the limit that hj = f . In
particular h solves the original problem (6.12).
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